Stable advection-reaction-diffusion with arbitrary anisotropy
نویسندگان
چکیده
Turing first theorized that many biological patterns arise through the processes of reaction and diffusion [1]. Subsequently, reaction-diffusion systems have been studied in many fields, including computer graphics. We first show that for visual simulation purposes, reaction-diffusion equations can be made unconditionally stable using a variety of straightforward methods. Second, we propose an anisotropy embedding that significantly expands the space of possible patterns that can be generated. Third, we show that by adding an advection term, the simulation can be coupled to a fluid simulation to produce visually appealing flows. Fourth, we couple fast marching methods to our anisotropy embedding to create a painting interface to the simulation. Unconditional stability to maintained throughout, and our system runs at interactive rates. Finally, we show that on the Cell processor, it is possible to implement reaction-diffusion on top of an existing fluid solver with no significant performance impact.
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملPattern Formation Induced by Time-Dependent Advection
We study pattern-forming instabilities in reaction-advection-diffusion systems. We develop an approach based on Lyapunov-Bloch exponents to figure out the impact of a spatially periodic mixing flow on the stability of a spatially homogeneous state. We deal with the flows periodic in space that may have arbitrary time dependence. We propose a discrete in time model, where reaction, advection, an...
متن کاملDynamics of conformal maps for a class of non-Laplacian growth phenomena.
Time-dependent conformal maps are used to model a class of growth phenomena limited by coupled non-Laplacian transport processes, such as nonlinear diffusion, advection, and electromigration. Both continuous and stochastic dynamics are described by generalizing conformal-mapping techniques for viscous fingering and diffusion-limited aggregation, respectively. The theory is applied to simulation...
متن کاملKrylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations
Implicit integration factor (IIF) methods were developed in the literature for solving time-dependent stiff partial differential equations (PDEs). Recently, IIF methods are combined with weighted essentially non-oscillatory (WENO) schemes in [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368-388] to efficiently solve stiff nonlinear advection-diffusion-reaction equations. The me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Visualization and Computer Animation
دوره 18 شماره
صفحات -
تاریخ انتشار 2007